Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Diam Relat Mater ; 134: 109775, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2237510

ABSTRACT

In this study, we introduced H-terminated diamond solution-gate field-effect transistor (H-diamond SGFET) to detect trace SARS-CoV-2 N-protein, which plays an important role in replication and transcription of viral RNA. 1-Pyrenebutyric acid-N-hydroxy succinimide ester (Pyr-NHS) was modified on H-diamond surface as linker, on which the specific antibody of SARS-CoV-2 N-protein was catenated. Fourier transform infrared spectrum, scanning electron microscope and energy dispersive spectrum were utilized to demonstrate the modification of H-diamond with Pyr-NHS and antibody. Shifts of IDS(max) at VGS = -500 mV in transfer characteristics of H-diamond SGFET was observed to determine N-protein concentration in phosphate buffer solution. Good linear relationship between IDS(max) and log10(N-protein) was observed from 10-14 to 10-5 g/mL with goodness of fit R2 = 0.90 and sensitivity of 1.98 µA/Log10 [concentration of N-protein] at VDS = -500 mV, VGS = -500 mV. Consequently, this prepared H-diamond SGFET biosensor may provide a new idea for diagnosis of SARS-CoV-2 due to a wide detection range from 10-14 to 10-5 g/mL and low limit of detection 10-14 g/mL.

2.
J Med Virol ; 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2230866

ABSTRACT

Breast milk has been found to inhibit coronavirus infection, while the key components and mechanisms are unknown. We aimed to determine the components that contribute to the antiviral effects of breastmilk and explore their potential mechanism. Lactoferrin (Lf) and milk fat globule membrane (MFGM) inhibit SARS-CoV-2 related coronavirus GX_P2V and SARS-CoV-2 trVLP in vitro and block viral entry into cells. We confirmed that bovine lactoferrin (bLf) blocked the binding between human angiotensin-converting enzyme 2 (hACE2) and SARS-CoV-2 spike protein by combining receptor binding domain (RBD). Importantly, bLf inhibited RNA-dependent RNA polymerase (RdRp) activity of both SARS-CoV-2 and SARS-CoV in vitro in the nanomolar range. So far, no biological macromolecules have been reported to inhibit coronavirus RdRp. Our result indicated that bLf plays a major role in inhibiting viral replication rather than viral entry, which has been widely explored. bLf treatment reduced viral load in lungs and tracheae and alleviated pathological damage. Our study provides evidence that bLf prevents SARS-CoV-2 infection by combining SARS-CoV-2 spike protein RBD and inhibiting coronaviruses' RdRp activity, and may be a promising candidate for the treatment of COVID-19. This article is protected by copyright. All rights reserved.

3.
MedComm (2020) ; 3(4): e196, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2148412

ABSTRACT

COVID-19 caused by SARS-CoV-2 infection affects humans not only during the acute phase of the infection, but also several weeks to 2 years after the recovery. SARS-CoV-2 infects a variety of cells in the human body, including lung cells, intestinal cells, vascular endothelial cells, olfactory epithelial cells, etc. The damages caused by the infections of these cells and enduring immune response are the basis of long COVID. Notably, the changes in gene expression caused by viral infection can also indirectly contribute to long COVID. We summarized the occurrences of both common and uncommon long COVID, including damages to lung and respiratory system, olfactory and taste deficiency, damages to myocardial, renal, muscle, and enduring inflammation. Moreover, we provided potential treatments for long COVID symptoms manifested in different organs and systems, which were based on the pathogenesis and the associations between symptoms in different organs. Importantly, we compared the differences in symptoms and frequency of long COVID caused by breakthrough infection after vaccination and infection with different variants of concern, in order to provide a comprehensive understanding of the characteristics of long COVID and propose improvement for tackling COVID-19.

4.
Adv Biol (Weinh) ; : e2200148, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1913745

ABSTRACT

Recently, the inhibiting effects of a clinically approved drug Cepharanthine on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have attracted widespread attention and discussion. However, the public does not understand the relevant research progress very well. This paper aims to introduce a brief history of studies on the effects of cepharanthine against SARS-CoV-2, including "discovery of anti-SARS-CoV-2 activity of cepharanthine in vitro", "potential mechanisms of cepharanthine against SARS-CoV-2", "confirmation of cepharanthine's anti-SARS-CoV-2 activity in vivo", "potential approaches for improving the druggability of cepharanthine" and "clinical trials of cepharanthine treating SARS-CoV-2 infection". Taken together, cepharanthine is believed to be a promising old drug for coronavirus disease-19 (COVID-19) therapy.

5.
Appl Soft Comput ; 124: 109055, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1866889

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) has popularized since late December 2019. In present, it is still highly transmissible and has severe impact on the public health and global economy. Due to the lack of specific drug and the appearance of different variants, the selection of the antiviral therapy to treat the patients with mild symptom is of vital importance. Hence, in this paper, we propose a novel behavioral Three-Way Decision (3WD) model and apply it to the medicine selection decision. First, a new relative utility function is constructed by considering the risk-aversion behavior and regret-aversion behavior of human beings. Second, based on the relative utility function, some new rules are defined to calculate the thresholds and conditional probabilities in 3WD and some corresponding theorems are explored and proved. Next, a new information fusion mechanism in the framework of evidential reasoning algorithm is developed. Then, the decision results are obtained based on the Bayesian decision procedure and the principle of maximum utility. Finally, an example with large-scale data set and an example about medicine selection for COVID-19 are provided to show the implementation process and effectiveness of the proposed method. Comparative analysis and sensitivity analysis are also performed to illustrate the superiority and the robustness of the current proposal.

6.
J Hazard Mater ; 430: 128414, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1665174

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a worldwide public health emergency, and the high transmission of SARS-CoV-2 variants has raised serious concerns. Efficient disinfection methods are crucial for the prevention of viral transmission. Herein, pulse power-driven cold atmospheric plasma (CAP), a novel sterilization strategy, was found to potently inactivate SARS-CoV-2-like coronavirus GX_P2V, six strains of major epidemic SARS-CoV-2 variants and even swine coronavirus PEDV and SADS-CoV within 300 s (with inhibition rate more than 99%). We identified four dominant short-lived reactive species, ONOO-, 1O2, O2- and·OH, generated in response to CAP and distinguished their roles in the inactivation of GX_P2V and SARS-CoV-2 spike protein receptor binding domain (RBD), which is responsible for recognition and binding to human angiotensin-converting enzyme 2 (hACE2). Our study provides detailed evidence of a novel surface disinfection strategy for SARS-CoV-2 and other coronaviruses.


Subject(s)
COVID-19 , Plasma Gases , Animals , COVID-19/prevention & control , Disinfection , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Swine
7.
Front Oncol ; 11: 602700, 2021.
Article in English | MEDLINE | ID: covidwho-1241184

ABSTRACT

PURPOSE: Given that the novel coronavirus disease (COVID-19) pandemic has disrupted operations globally, an institution's ability to repeat transarterial chemoembolization (TACE) for patients with hepatocellular carcinoma (HCC) has also been affected. The aim of this study was to evaluate the impact of the COVID-19 on the intervals and outcomes of TACE in HCC patients. MATERIALS AND METHODS: This retrospective study included 154 HCC patients who underwent follow-up after TACE treatment from January 2020 to March 2020 (n = 71, study group) and January 2019 to March 2019 (n = 83, control group) at two institutions in China. The endpoints included the follow-up interval and overall response rate (ORR). Multivariate logistic regression analyses were performed to identify independent risk factors for a worse ORR. The cut-off point was determined to divide follow-up durations into long- and short-intervals. RESULTS: The median follow-up interval was 82.0 days (IQR, 61-109) in the study group, which was significantly longer than 66.0 days (IQR, 51-94) in the control group (P = 0.004). The ORR was 23.9 and 39.8% in the study and control group, respectively (P = 0.037). The cut-off value was 95 days. The grouping (OR, 2.402; 95% CI, 1.040-5.546; P = 0.040), long interval (OR, 2.573; 95% CI, 1.022-6.478; P = 0.045), and China liver cancer staging system (OR, 2.500; 95% CI, 1.797-3.480; P <0.001) were independent predictors for the efficacy of TACE treatment. CONCLUSIONS: The COVID-19 pandemic causes a longer follow-up interval in general, which may further lead to a lower ORR in HCC patients. Those with a follow-up interval of >95 days tend to have a worse prognosis.

8.
Biomed Res Int ; 2021: 5909612, 2021.
Article in English | MEDLINE | ID: covidwho-1138456

ABSTRACT

BACKGROUND: The outbreak of coronavirus disease (COVID-19) has become a global public health emergency. OBJECTIVE: To evaluate the characteristics and outcomes of patients with COVID-19 in Anhui and to identify predictors of viral clearance. METHODS: We retrospectively analyzed the data collected from discharged patients with laboratory-confirmed SARS-CoV-2 infections. We compared clinical features between viral clearance and viral persistence, and evaluated factors associated with SARS-CoV-2 shedding using multiple linear regression. RESULTS: Among the 83 patients involved in the study, the median age was 43 years, while 60.2% were male, 35.4% had comorbidities, and the mortality was zero. The median time from illness onset to admission was 5 days (interquartile range (IQR), 2-7 days), and the median time from the illness onset to SARS-CoV-2 RNA detection was 16 days (IQR, 13-18 days). The factors influencing viral clearance were as follows: (1) delayed admission (beta 1.057, 95% CI 0.810-1.304; p ≤ 0.001) and (2) underlying comorbidities (beta 1.907, 95% CI 0.198-3.616; p = 0.029). No significant differences were observed in the length of stay (p = 0.246) and pneumonia between asymptomatic and symptomatic patients based on computed tomography (CT) (p = 0.124). CONCLUSIONS: Delayed admission and underlying comorbidities may effectively predict SARS-CoV-2 RNA clearance. For those infected with SARS-CoV-2, even asymptomatic patients without any clinical symptoms should be traced and isolated. This practice may reduce the spread of SARS-CoV-2 and slow the COVID-19 pandemic caused by the virus. Clinical Trial Registration Number: This trial is registered with 2020-051.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Adolescent , Adult , Comorbidity , Disease Outbreaks , Female , Humans , Male , RNA, Viral/genetics , Retrospective Studies , Virus Shedding/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL